Weights version | Link | FastChat version compatibility | Base Model | Release Date | Fine-tuning Data |
---|---|---|---|---|---|
v1.5 | 7B, 7B-16k, 13B, 13B-16k | >=0.2.21 | Llama 2 | Aug. 1, 2023 | 370M tokens |
v1.3 | 7B, 13B, 33B | >=0.2.1 | Llama 1 | Jun. 22, 2023 | 370M tokens |
v1.1 | 7B, 13B | >=0.2.1 | Llama 1 | Apr. 12, 2023 | - |
v0 | 7B-delta, 13B-delta | <=0.1.10 | Llama 1 | Mar. 30, 2023 | - |
###
to the EOS token </s>
. This change makes it easier to determine the generation stop criteria and enables better compatibility with other libraries.transformers>=4.28.0
and fschat >= 0.2.0
.
Please update your local packages accordingly. If you follow the above commands to do a fresh install, then you should get all the correct versions.
/path/to/*
with the real paths.
/path/to/*
with the real paths.
--low-cpu-mem
to the commands above, which will split large weight files into smaller ones and use the disk as temporary storage. This can keep the peak memory at less than 16GB.transformers>=4.28.0
and redo the weight conversion for the base llama model.
After applying the delta, you should have a file named special_tokens_map.json
in your converted weight folder for either v0 or v1.1.
The contents of this file should be the same as this file: https://huggingface.co/lmsys/vicuna-13b-delta-v0/blob/main/special_tokens_map.json.
If the file is not present, please copy the special_tokens_map.json
and tokenizer_config.json
files from https://huggingface.co/lmsys/vicuna-13b-delta-v0/tree/main to your converted weight folder. This works for both v0 and v1.1.